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We study the effective numerical solution of first-exit-time problems in any number of dimensions
with an arbitrary boundary. We show how a full discretization of the diffusive process, both in space
and time, gives accurate results, allowing a clean mathematical analysis and the realization of fast

and compact algorithms.
PACS number(s): 02.70.+c, 02.60.—x, 02.50.—r

I. INTRODUCTION

The numerical simulation of stochastic equations faces
two major problems. On one hand there is always a sta-
tistical error in any measured quantity; this can be re-
duced arbitrarily at the cost of more and more simulating
time. On the other hand most simulation algorithms in-
troduce a systematic error, parametrized for instance by
the time step h used in the integration of the stochastic
equations, and an extrapolation for h — 0 is required to
estimate the exact value.

We agree with the general philosophy pointed out in
[1]: the use of higher-order algorithms is not as good as
it seems. This necessary extrapolation cannot be done
at too large h otherwise the systematic error is no longer
under control. The same extrapolation in the case of a
low-order algorithm is faster since we can use a relatively
large h. Furthermore, in the situations where the tra-
jectory itself is important, higher-order algorithms can
pose new, unexpected problems. An interesting example
is the so-called first-exit-time problem [2, 3]: in this case
the difficulty is that one has to know exactly when a tra-
jectory has crossed a given boundary. The most naive
algorithm implies an O(v/h) error on the first exit time
T. An improvement has been proposed [4] to overcome
this bad order of convergence. However, this solution re-
sults in a slow algorithm and cannot be extended easily
to the general situation of an arbitrary boundary in any
number of dimensions d.

We propose here a method in which both space and
time are discretized following the general ideas of [5, 6].
This solves the problem of the boundary very simply in
the univariate case and with minor changes in the gen-
eral multivariate case. The full discretization that we
perform has two important features. From the point of

1063-651X/93/48(2)/1539(8)/$06.00 48

view of simulation the algorithm is very fast and com-
pact; it uses only uniform random numbers (7] and only
for making choices. In particular, in the univariate case,
the algorithm needs integer arithmetic only and can store
quickly the hard core of the computation (namely, the
various components of the driving force) before starting
the main iteration. From the point of view of the analy-
sis, it allows us to write down a simple discrete equation
whose mathematical rigor is not questionable and which
can be studied in a very clean way since the systematic
error is under control.

The plan of the paper is the following: in Sec. II we
describe our fully discretized approach; in Sec. III we
discuss the univariate mean first-exit-time problem; in
Sec. IV we examine the particular problems posed by an
arbitrary boundary and, finally, in Sec. V, we present
the results obtained within particular models. Appendix
A works out in full detail a simple soluble case explor-
ing the problems posed by higher-order algorithms, while
Appendix B illustrates an interesting relation between
the discrete approach to the mean first-exit-time prob-
lems and a solution of the Poisson equation in terms of
random walks.

II. FROM CONTINUUM TO DISCRETE
DYNAMICS

We want to study the stochastic process in R? corre-
sponding to the equation

£i(t) = fi(x) + &(t), (1)
where &;(t) is a Gaussian noise satisfying

(€i(£)€;(t') =2D8;8(t — t'),

1539 ©1993 The American Physical Society
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with all higher correlation functions determined by the
Gaussian character of the noise. We have no problems of
interpretation of the above stochastic equation and the
Fokker-Planck equation obeyed by the distribution

P(z, t) = (6(z — z(t))) (2)
is

Ot P(z,t) = ip(zat)’ (3)
where L is the Fokker-Planck operator

R 82 0

L= m—a—%[fi(z)"'] (4)

whose adjoint L' determines the temporal evolution of
the average of all the quantities

2 (0(a)) = (L19(a). 5)

Our strategy will be the following: we shall discretize
both time and space with a priori independent steps h
and A. We shall show that it is possible to relate h
and A with a sort of Einstein relation in order to look
at the discrete Fokker-Planck equation in terms of the
probabilities of making discrete jumps.

The important point is that the probabilistic interpre-
tation links together the two limits h — 0 and A — 0
and we can keep easily under control the continuum limit.
Writing derivatives using finite differences relations,

fl(z)= i [f(z+ A) — f(z — A)] + O(A?) (6)
and

£'(@) = 27 f(@+ &)~ 27(2) + f(z — A)] + O(A7),

(7)
we obtain immediately the equation
P(x,t + h) = P(z,t) + hLaP(z,t) + O(h?)
=af (A7 z)P(A] z,t) + a®(z) P(2)
+a] (Afz)P(Af z,t), (8)

where the coefficients a¥(z) can be interpreted as the
probabilities of making a jump of k£ A steps in the ith
direction. This requires that the a¥(z) lie in the interval
(0, 1) and their sum to be 1. The mesh step A is the
same for all the directions; the notation is

Afz:(...,miiA,...). (9)
The explicit expression for the probabilities is the follow-
ing:

2hDd

a.o(:v) =1- ——A—z—,

at (@) =20 + i),

We can easily check that the correct continuum limit is
recovered if and only if A ~ A?2, the precise proportion-
ality being determined by the requirement of having the

greatest time step possible compatible with the proba-
bilistic realization of the above discretization so to accel-
erate the simulation. We find that our discrete version
of the Einstein relation is

A2
Then
a®(z) =0, (11)
6#(@)= o (12 3550)). (12)

We remark that for a localized motion (corresponding to
a peaked equilibrium distribution) these can be always
interpreted as probabilities if A and consequently A are
taken small enough.

The simulation of the above algorithm is very simple:
at each step one has to choose a jump from a discrete
set of moves. The choice is made with probabilities de-
pending on the force. In one-dimensional problems, as we
shall see, these probabilities can be stored before start-
ing the simulation so that the algorithm turns out to be
very compact and fast. In d > 1 the boundary poses new
problems to be discussed below and this storing is not
possible anymore.

In the one-dimensional case, one can write a second-
order algorithm (Fokker-Planck equation correct up to
terms h%? ~ A%) in the compact form

a*(z) = '@ [Pz + 3a)] ™,

(13)
a®(z)=1-a*(z) —a (x),
where f(z) = —V’(z) and
F(z) = exp ________V(x _;)A/2) + 4exp Vi)
+ exp w (14)

D

This algorithm satisfies the detailed balance condition
and thanks to the ergodicity of the random walk, en-
sures the exact convergence to the equilibrium distribu-
tion e~V (®)/D In greater detail, the structure of Eq. (13)
ensures the correct equilibrium distribution while the
particular choice of F(z) is needed to achieve second or-
der in precision. In Sec. V we shall compare this method
to the first-order algorithm.

One possible extension of the second-order formula to
the d > 1 case is given by the following equation:

d_ d . d A
exp (hZLi) = (H exp 5L¢> (H exp ELd.,.l_i)
i=1 i=1 i=1
+0(h®), (15)

which is readily obtained from the formula
exp (—gﬁ) exp(hB) exp (-g—/i)

= exp[h(A + B) + O(h%)]. (16)



48 NUMERICAL SOLUTIONS OF FIRST-EXIT-TIME PROBLEMS 1541

Here L; is the Fokker-Planck operator in the ith direc-
tion.

The algorithm corresponding to Eq. (15) is very simple.
As a first step, we order once and for all the first d inte-
gers forming the sequence o = {41, %2, ..., t4}. Then, we
make a one-dimensional update of all the possible direc-
tions moving forward along o. Finally, the same sweep is
repeated, but moving backward along o, as one can see
in Eq. (15).

The result is a full update which follows the Fokker-
Planck evolution up to the second order and which sat-
isfies exactly the detailed balance condition. As an il-
lustrative example, let us consider d = 2, then we can
choose ¢ = {1, 2} and the formula

(17)
must be read as a progressive update in the order x —
y — y — x with step h/2. Further analysis and nu-
merical investigations on these kind of algorithms are in
preparation [8].

III. APPLICATION TO MEAN
FIRST-EXIT-TIME PROBLEMS

We describe briefly the mean first-exit-time problem.
We consider the diffusion from a given starting point in
the presence of an assigned boundary: the quantity to
be determined is the mean time needed for the diffus-
ing variable to reach the boundary. The use of a naive
algorithm like the Euler one to discretize the Langevin
equation shows where the difficulty is. Consider the evo-
lution from zq dictated by

Tn+1 = Tn + hf(zn) + V2Dh&,, (18)

where &, are uncorrelated normalized Gaussian random
numbers. Assume that absorbing barriers exist at |z| =
L. The equation reproduces the correct equilibrium dis-
tribution

P(z) ="V, f(z) = -V'(z) (19)

apart from terms O(h); nevertheless, the mean first-exit-
time has a O(v/h) intrinsic error due to the uncertainty
in the time of crossing the boundary. This error is esti-
mated by the time needed in a Brownian random walk
to cover the distance A and by the Einstein relation, this
is ~ vh. In [4] it is shown that it is possible to keep
track of the diffusing “particles” that cross the boundary
but that are not detected. Anyway, the algorithm needs
the expensive evaluation of an exponential and cannot
be easily generalized to nontrivial boundaries. The dis-
cretization of space eliminates this uncertainty since we
know exactly when a jump crosses the boundary.

As the multivariate case presents some subtleties, let us
first consider d = 1 as a useful example. Given a random
walk on a one-dimensional lattice, let P (L, T |y) be the

probability of reaching a boundary situated at £ = L in
a time ¢t = 7h starting from = = y. It is easy to convince
oneself that P satisfies the equation

P(L,7+1|z) = a*(z)P(L, 7| Atz)
+a~ (z)P(L, T| A™x), (20)
which expresses the composition of probabilities and is

readily understood in terms of discrete jumps. The first
exit time in units of A is clearly given by

T(z)=> P(L,7|z)r (21)

=1

and translating the sum by one time step

T(z)= iP(L, T+ 1|z)(r+1)
T=0

=at ()T (A%z) + 0™ (2)T(A™z) + 1, (22)

which again can be given a simple interpretation in terms
of probabilities. Note that we have obtained directly
a numerical method for the exact determination of the
mean first exit time. The vector T,, = T'(n) (T}, being
the mean first exit time from the nth site) can be found
exactly as the solution of the tridiagonal problem

KopnThn = w,

Kmn =6mn_a:6m+l,n m?'("lv n¢N

(23)

- ar_n 6m,n+1 )

w=(0,1,...,1,07,
where we impose the boundary condition

T.=0 (24)
on an absorbing barrier and

Tn=1+Tni1 (25)

on a reflecting barrier bounding the right side.
These relations correspond to the continuum equations

LT = -1, (26)
where the adjoint operator is
- 8?2 o
= .

and the boundary conditions on absorbing and reflecting
boundaries are

T(xaps) =0, T'(xret) =0, (28)

but note how easily and intuitively we have recovered
them on the lattice. Some remarks are in order: in
the univariate problem, the boundary structure is totally
trivial since a barrier is just a point.

The first-order algorithm which involves only one-step
jumps has no problems, provided one chooses the lattice
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such that one of the sites is exactly on the boundary.
This is always possible and no O(\/% error occurs.

For a higher-order algorithm, like the one obtainable
by a straightforward extension of the first order described
here, the situation is different. Generally speaking, one
has to consider multiple jumps and it is impossible, in
general, to avoid an uncertainty in the crossing time.
This is shown in more detail in Appendix A where we
show how this mechanism works in the solvable case of
the Wiener process.

IV. D > 1 AND ARBITRARY BOUNDARY

According to our general idea, let us focus on the prob-
lem of finding a fast O(h) accurate algorithm in the mul-
tivariate case with arbitrary boundary. In more than one
dimension the problem of the boundary becomes very im-
portant since its geometrical structure is in general not
trivial. If we replace the true physical boundary with
a discretized version, we introduce, in general, an O(A)
error which means as usual an O(v/h) error on the mean
first exit time. One could think to solve this problem
by modifying the mesh and putting the boundary’s edge
exactly on it. This cancels the O(v/h) error in the dis-
cretization of the boundary, but introduces a comparable
error in the discretization of the Fokker-Planck operator.
If we consider the discretization of the Laplace operator
obtained by writing second derivatives as finite differ-
ences on asymmetric intervals, for instance using

1'(a) = 2( @t - 5@

1
+mf(:r - b)) (29)

with a,b = O(A), expanding the right-hand side we get
the left-hand side apart from a O(A) correction due to
the asymmetry of the interval. This O(v/h) contribu-
tion vanishes only if a = b. This means that covering a
region bounded by a nonstraight line using asymmetric
rectangular lattices or triangular ones is not the solution.

The conclusion is that we are not able to construct
a static lattice covering an arbitrary region without in-
troducing an O(v/h) error in the approximation of the
boundary or in the discretization of the Fokker-Planck
operator. Here static means that it is fixed once and
for all before starting the simulation. From the point of
view of simulation, staticity means the possibility of stor-
ing the bulk of the computation, that is, computing only
once the forces.

If we do not require the lattice to be static, we can use
an adaptive algorithm. A simple first-order one is the
following: consider a domain D C R? and its boundary
oD.

(1) Start with a point P and a space step A.

(2) Set

where D; is the distance computed in the ith direction
and set
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(31)

(3) Choose a direction 7 and move backward or forward
the point P with probabilities

+ 1 6
a; (P) = 2d (1 + 2Df1(P)) . (32)

(4) Go back to (2) if the boundary has not been
reached.

This dynamic algorithm has the obvious disadvantage
that it is not possible to store previously a table of the
forces, but on the other hand, it is quite general since
it works for an arbitrary boundary in any dimension d.
Anyway, it is clear that one can rely on the discrete algo-
rithm with fixed step size taking advantage of its speed
and fitting a polynomial in v/A to the mean first exit
times at different step size.

As an example we shall simulate numerically the mean
first exit time in radially symmetric two-dimensional
(2D) processes driven by the force f(p). Assuming an
absorbtive boundary at p = R, the mean first exit time
solves the equation

Dd dT dT

D (05 + 105 (33)
with the boundary conditions

T'(0) = T(R) = 0. (34)

The condition T7(0) = 0 follows from requiring 7'(0) <
00, the point p = 0 being a reflecting barrier for the
random motion.

In the Wiener case f(p) = 0 and the solution is simply

T(p) = 75(R? = /7).

In the Ornstein-Uhlenbeck process, which describes a
particle bounded by the elastical force f(p) = —kp, one
finds

1 [ (kR? kR?
T(O) = Q—k- [El (ﬁ') —YE — 2ln (ﬁ):l y
where the exponential integral function Fi(z) is defined
by

(35)

(36)

Ei(z) = P / ’ e?tdt, (37)

-0
where P denotes principal value. In particular, if k = 1,
R=1,and D=1/2,

T(0) = [Ei(1) — v5] = 0.658 951. (38)

V. NUMERICAL RESULT

In this section we want to show with explicit examples
the accuracy and speed of the discrete algorithms de-
scribed above. To this end, we make a comparison with
the first-order Euler scheme in three cases of the Wiener,
Ornstein-Uhlenbeck, and Ginzburg-Landau model in one
dimension. The results with the Euler algorithm are
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taken from [7]. The data shown are obtained with 10° re-
alizations of the stochastic process and their values agree
with the ones obtained by inversion of the mean first-
time matrix as explained in Sec. III while the statistical
error is negligible. Let us call Discrete 1 the first-order
discrete algorithm and Discrete 2 the second-order one,
Eq. (13). The ratio of the speeds is

timproved
Euler

t
Euler ~ 8, ~ 12, (39)

tDiscrete 1 tDiscrete 1

where the improvement refers to the Strittmatter solu-
tion to deal with the v/A error term. The greater preci-
sion of the discrete algorithm due to the absence of the
vk term is evident from Figs. 1, 2 and 3. In Figs. 4
and 5 we show also the almost constant results from the
algorithm Discrete 2.

We are going to fit the mean first exit times at differ-
ent values of h with an appropriate polynomial in v or
h and compare the results with the theoretical value ob-
tained by analytical computation. These fits are shown
as solid lines in Figs. 1, 2 and 3.

In the Wiener process the fits give

Ttheor = 1~Oa

Tguler = 0.9951 + 1.3V,
Tpiscrete 1 = 1.0,
Tbiscrete 2 = 1.0.

In the Ornstein process with D = 0.5 we obtain

Tiheor = 1.445 246,

Tguler = 1.4460 + 2.3V,
Thiscrete 1 = 1.4453 — 0.43h,
TDiscrete 2 = 1.44524 + 0.30h2.

Finally, in the Ginzburg-Landau process with D = 0.1
we have

1.35
o Dunweg et al.
s Discrete 1
1.25
—
1.15 |
1.05
N & £ ——h
0.95 + =
0.00 0.10 0.20
h|/2
FIG. 1. First exit time for the Wiener process.

241 T r T T

20

o Dunweg at al.
& Discrete 1

1.4 I 1 1 L 1
0.00 0.05 0.10 0.15 0.20 0.25
h1/2
FIG. 2. First exit time for the Ornstein-Uhlenbeck pro-

cess.

Tineor = 30.821 30,
Tiuler = 30.899 + 16.89v/h,
Thiscrete 1 = 30.820 + 10.90A,
Thiscrete 2 = 30.8213 + 0.32h%.
In the case of the Discrete 2 algorithm, it is impressive
to see how small the correction term is, especially for the
Ginzburg-Landau process.

We have tested the adaptive algorithm in the case of
the 2D Ornstein-Uhlenbeck model on the disk making
again a comparison with the Euler algorithm. The points
obtained at D = 0.5 are shown in Fig. 6 and the fit gives

Tiheor = 0.658 951,
Tiuler = 0.6594 + 1.00v/R,
Tpiscrete 1 = 0.6589 — 0.29h.
Here the discrete result is obtained by direct simulation

since no exact inversion is possible with the adaptive al-
gorithm. The error bars are negligible compared to the

35.5 |

o Dunweg et al.

345 s Discrete 1

33.5 |

325

31.5

'5 1 1 1 L
0.00 0.05 0.10 0.15 0.20 0.25
'

FIG. 3. First exit time for the Ginzburg-Landau process.
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1.445
1.435
-
o Discrete 1
& Discrete 2
1.425
1.415 . ‘ : : :
0.00 0.05 0.10 0.15 0.20 0.25
hVZ
FIG. 4. Discrete 1 vs Discrete 2 algorithm results in the

Ornstein-Uhlenbeck process.

size of the symbols. The ratio of the speeds is

t
~65, —2uer g5, (40)

tDiscrete naive

tEuler
tDiscrete

Also given is the ratio for the “Discrete naive” algorithm,
namely, the discrete first-order algorithm with fixed step
sizes in which the storing of the forces is allowed.

Finally we have computed the exact solution of the
tridiagonal problem for the first-order treatment of the
Ginzburg-Landau potential

V(z) = —32°® + §z* (41)
for a diffusing particle starting at x = 1.0 and with differ-
ent values of the diffusion coefficient. In Table I we report

the results of the fit with a linear function T' = Ty + T h,
considering different values of the diffusion constant D.

VI. CONCLUSIONS

In this work we have shown how to devise and imple-
ment algorithms for the integration of stochastic differ-
ential equations based on the discretization of both the
simulation time and the configuration space. The “Ein-

31.30 .
o
31.20
o Discrete 1
s Discrete 2
31.10 |
-
31.00 |
30.90 |
30.80 s il s s
0.00 0.05 0.10 0.15 0.20 0.25
hll?
FIG. 5. Discrete 1 vs Discrete 2 algorithm results in the

Ginzburg-Landau process.

0.90 — —— ——
0.85 -
o Euler
a Discrete 1
0.80
= 075
0.70
0.65 |
0.60 . > >
0.00 0.05 0.10 0.15 0.20
172

h

FIG. 6. Results obtained with the adaptive algorithm in
a 2D Ornstein-Uhlenbeck process.

stein relation” linking the two discretizations allows us
to connect the limits of continuum and zero time step,
and this results in a very fast and accurate method of
simulation: the systematic errors are well under control
and the speed of the algorithm permits good statistical
precision.

We have applied this method to the determination of
mean first exit times; in this problem not only the equi-
librium distribution is important, but also the trajectory
itself. Numerical results confirm the expected improve-
ment over existing algorithms.

Since the algorithm is computationally efficient, the
first-order discretization is enough, and the high statis-
tical accuracy attained permits us to extract easily the
results in the simultaneous continuum and 7 — 0 limit,
using standard fitting procedures.
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APPENDIX A: MEAN FIRST EXIT TIME
FOR THE WIENER PROCESS

In the continuum the mean first exit time for the
Wiener process satisfies the equation

TABLE I. Results of the fit with a linear function

T = Tp + T1h with different values of diffusion constant D.
D Theor. To T

0.10 30.821 30.82 10.96
0.09 40.728 40.73 17.76
0.08 57.478 57.48 32.08
0.07 89.195 89.20 66.15
0.06 159.87 159.9 165.2
0.05 361.90 361.9 562.6
0.04 1238.4 1238 3040
0.03 9739.6 9739 4.395 x 104
0.02 6.1606 x 10° 6.162 x 10° 6.294 x 10°
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DT"(z) = -1,
T(0) = T(1) = 0.

and the trivial solution is

1

T(z) = 2D:c(l z). (A1)
The interesting point to stress is that this exact solution
satisfies at all orders the discrete equation for T'(z). A
straightforward extension of the approach described in
the main text gives with an O(h?) precision the following
second-order equation for the lattice mean first-passage
time

T,= (1— 56+ 36%) + 36(1 - 36)(Tnv1 + Tn1)
+5€(3¢6 — 1)(Tt2 + Tn-2).

Here, the parameter £ is an arbitrary constant which
generalizes the Einstein relation linking space and time
through the relation
A2
h=§¢—.
¢ 2Dd
The equilibrium action is corrected by O(h3) terms,
which are absent if we choose £ to reduce this solution to
the algorithm of Eq. (13).
Now, the point is that the jump dynamics solves the
above equation with the effective boundary conditions

T_1=T()"—“Ta= a+l=07 aA =1 (A3)

(A2)

since we consider the jumping particle outside the region
if at a certain time step it is on the boundary or one step
beyond it. The naive discretization of the continuum so-
lution does not satisfy these boundary conditions. Using
standard techniques for the solution of recurrency equa-
tions with constant coefficients, we find the most general
solution of the above equation

4
1
T, = —én(a —n)+ Z cpy, (A4)
i=1
where p; are the four solutions of the equation
3¢ -7
2.2 _
(-1 (7 +2 20 p41) =0, (A5)
namely
p=11ww? (A6)
with
- 4 —
Y 3¢ — T+ 24/3( 35). (A7)

3¢ -1

The relevant interval in which a probabilistic interpre-
tation of the equation for the first exit time is possible
is

i1<¢<} (A8)
in which w(€) decreases monotonically from 0 to —1.
Since p = 1 is a double root the most general solution
which respects the symmetry

n—a—n (A9)

is
1

T, = -én(a —n)+ec + 2w +w™). (A10)

Imposing the boundary conditions one finds
1 w(l + w®)
=—= 1
C1 g(a+ )(l_w)(l_wa+1)’
(A11)

1 w
A )

We must distinguish at this point three cases.
(1) + < ¢ < 4. In this interval |w| < 1 so that as
a — 00, with no reference to the parity of a we get
1
Cc; — E(l =+ a)w—u.é'—l,

w
o

q—»%(l—i—a)l_

The error in the computation of T'(0) = h T/, is then

h6T, /2 = %(a + l)w—ii(l — 2w%?)

aw _é w
fw—-1) Dw-1

and this is O(v/h) since A ~ hl/2,

(2)€¢= % There are no steps with length 2 so that the
discrete solution is the one of the first-order algorithms
which is

T, = 3n(a — n),

(A12)

(A13)

namely, going back to the continuum, the exact one.

(8) £ = §. This is the most interesting case since its
sensibility upon the boundary condition shows the lattice
version of the v/A problem.

The p parameter in the general solution of the recur-
rent equation now takes the values

p=1,1, -1, —1. (A14)
If we are to preserve the left-right symmetry of the prob-
lem, we must have the same number of sites on the left
and on the right of £ = 1/2 so that we must consider the
case a = 2N of an even lattice. Then, the flip symme-
try n — a — n gives after having imposed the boundary
conditions

Tn=3n(2N —n)+ 22N +1)[1 - (-1)"].  (A15)

Now we must take care of the parity of N. The point
z = 1/2 always corresponds to the site n = N and we
find for the error in the computation of the first exit time

0 N even

%(w +1)~vE Nodd, (A16)

héTy = {

which is just what one gets from the numerical simula-
tions.
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APPENDIX B: SOURCES

An interesting application of the jump-dynamics ap-
proach is related to the following result. Consider a re-
gion D (one dimensional for simplicity, but this is not a
limitation) with absorbing boundary. The Kolmogorov
backward equation [3] for the probability of being at zj
at time t+1, starting from x,, in the free Wiener motion,
is

P(zk, t+1|zp) = L P(zk, t| Tnt1)

+%P($k, t|Tp-1). (B1)

We construct the lattice version of the continuum quan-
tity

o) =D [ "t [ e P t12p(e) (B2)
which is
Pn =DZZP(1:IW tl.’l:n)pk, (B3)
t=0 k

where the adimensional number D, assuming h =
A?/2D, is

D:D—h-=%.

3 (B4)
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It follows that

Pnt1 — 2Pn + Pn-1

= Z{P(xkv t+1|zn) — Pk, t|zn)} Pk — —pn
t,k

(B5)
as N — oo since the boundary is absorbing and

P(zk, 0| xpn) = kn- (B6)
So ¢, is the discretization of the solution ¢(z) of the
Poisson equation

Ap=—p (B7)
with zero Dirichlet boundary conditions by construction,
since absorbing boundary means

y € 90D =Vz, P(z,t|y)=0. (B8)
On the other hand, it is clear that ¢, can be obtained
computing the first exit time from z,, with the local time
step hDp(z) and this is an alternative way of solving
the Poisson equation. We remark that this result can be
proved from the more general results on abstract Markov
chains associated to Liouville operators [9].
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